Generating Functions of Binary Products of Tribonacci and Tribonacci Lucas Polynomials and Special Numbers
نویسندگان
چکیده
In this paper, we introduce a new operator defined in give some generating functions of binary products Tribonacci and Lucas polynomials special numbers.
منابع مشابه
Incomplete generalized Tribonacci polynomials and numbers
The main object of this paper is to present a systematic investigation of a new class of polynomials – incomplete generalized Tribonacci polynomials and a class of numbers associated with the familiar Tribonacci polynomials. The various results obtained here for these classes of polynomials and numbers include explicit representations, generating functions, recurrence relations and summation fo...
متن کاملTribonacci Numbers and the Brocard - Ramanujan Equation
Let (Tn)n≥0 be the Tribonacci sequence defined by the recurrence Tn+2 = Tn+1 + Tn + Tn−1, with T0 = 0 and T1 = T2 = 1. In this short note, we prove that there are no integer solutions (u,m) to the Brocard-Ramanujan equation m! + 1 = u2 where u is a Tribonacci number.
متن کاملOn the sum of reciprocal Tribonacci numbers
In this paper we consider infinite sums derived from the reciprocals of the Fibonacci numbers, and infinite sums derived from the reciprocals of the square of the Fibonacci numbers. Applying the floor function to the reciprocals of these sums, we obtain equalities that involve the Fibonacci numbers.
متن کاملA Tribonacci-Like Sequence of Composite Numbers
We find a new Tribonacci-like sequence of positive integers 〈x0, x1, x2, . . .〉 given by xn = xn−1 + xn−2 + xn−3 , n ≥ 3, and gcd(x0, x1, x2) = 1 that contains no prime numbers. We show that the sequence with initial values x0 = 151646890045, x1 = 836564809606, x2 = 942785024683 is the current record in terms of the number of digits.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Earthline Journal of Mathematical Sciences
سال: 2022
ISSN: ['2581-8147']
DOI: https://doi.org/10.34198/ejms.8222.237262